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Lagrangians and Hamiltonians for
One-Dimensional Autonomous Systems

G. González1

An equation is obtained to find the Lagrangian for a one-dimensional autonomous
system. The continuity of the first derivative of its constant of motion is assumed.
This equation is solved for a generic nonconservative autonomous system that has
certain quasi-relativistic properties. A new method based on a Taylor series expansion
is used to obtain the associated Hamiltonian for this system. These results have the usual
expression for a conservative system when the dissipation parameter goes to zero. An
example of this approach is given.
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1. INTRODUCTION

Lagrangians and Hamiltonians occupy an important position in the develop-
ment of physics. Modern physics theories are formulated in terms of Hamiltonian
or Lagrangian structures. Very often the Lagrangian of a system can be used to
find its constants of motion which can give insight into the stability and period-
icity of the system (Vujanovic and Jones, 1989). For an autonomous system the
Hamiltonian itself is a constant of motion of the system.

When a system is conservative, the Lagrangian and the Hamiltonian can be
obtained by subtracting or adding respectively the kinetic and potential energy of
the system (Goldstein, 1980). The ease with which such constructions are made
has contributed to their immense popularity in the field of physics. However,
this construction is not useful for finding Lagrangians and Hamiltonians for non-
conservative systems. The reason is that there is not yet a consistent Lagrangian
and Hamiltonian formulation for nonconservative systems. The problem of ob-
taining the Lagrangian and Hamiltonian from the equations of motion of a me-
chanical system is a particular case of “The Inverse problem of the Calculus of
Variations” (Santilli, 1978). This topic has been studied by many mathematicians
and theoretical physicists since the end of the last century. The interest of physicists
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in this problem has grown recently because of the quantization of nonconservative
systems. A mechanical system can be quantized once its Hamiltonian is known
and this Hamiltonian is usually obtained from a Lagrangian (Um et al., 2002).

The problem of the existence of a Lagrangian for one-dimensional systems
was solved by Darboux (Darboux, 1984), and the relationship between the constant
of motion and the Lagrangian for one-dimensional autonomous systems was given
by Kobusen-Leubner-López (Kobussen, 1979; Leubner, 1981; López, 1996). The
problem arises when one tries to obtain the Hamiltonian expressing the velocity in
terms of the canonical variables, which is not possible to do in general. The main
purpose of this paper is to obtain the Lagrangian and the Hamiltonian for a noncon-
servative autonomous system given by mdv/dt = (−dU/dx + γ (x)v2)(1 − α2v2)
where U (x) is the potential energy, v is the velocity, γ (x) is an arbitrary function of
position and α2 is any real number. This mechanical system is of interest because
it represents, at first order of approximation, the motion of a relativistic particle
under the action of a dissipative force which is proportional to the square of the
velocity.

2. CONSTANT OF MOTION, LAGRANGIAN AND HAMILTONIAN

Newton’s equation of motion for one-dimensional autonomous systems can
be written as the following dynamical system

dx

dt
= v ,

dv

dt
= F(x , v), (1)

where x is the position of the particle, v is the velocity and F(x , v) is the force
divided by the mass of the particle. Let K = K (x , v) be a constant of motion of
(1), then

v
∂K

∂x
+ F(x , v)

∂K

∂v
= 0. (2)

Assuming the following condition over the constant of motion

∂2 K

∂x∂v
= ∂2 K

∂v∂x
, (3)

and using the fact that for one-dimensional autonomous systems a constant of
motion is given in terms of the Lagrangian by (Goldstein, 1980)

K (x , v) = v
∂L

∂v
− L , (4)

then (3) leads to

v
∂G

∂x
+ ∂(F G)

∂v
= 0, (5)
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where the Euler–Lagrange equation (Goldstein, 1980) has been used and
G = ∂2L/∂v2. Once a nontrivial solution for G has been found, the Lagrangian
is obtained through the integration

L(x , v) =
∫

dv
∫

G(x , v) dv + f1(x)v − f2(x), (6)

where f1(x) and f2(x) are arbitrary functions. The second term on the right side
of (6) corresponds to a gauge of the Lagrangian which brings about an equivalent
Lagrangian (Goldstein, 1980), and it is possible to forget it. The function f2(x)
can be determined as it will be showed for the following mechanical system given
by

m
dv

dt
=

(
−dU

dx
+ γ (x)v2

)
(1 − α2v2), (7)

where U (x) is the potential energy, v is the velocity, γ (x) is an arbitrary function
of position and α2 is any real number. It is easy to convince oneself that a solution
to (5) for the mechanical system (7) is

G(x , v) = m

(1 − α2v2)2
exp

[
− 2

m

(∫
γ (x) dx − α2U (x)

)]
, (8)

using (8) one gets the generalized linear momentum

p = m

2

(
v

1 − α2v2
+ tanh−1(αv)

α

)
exp

[
− 2

m

(∫
γ (x) dx − α2U (x)

)]
, (9)

and the Lagrangian

L(x , v) = mv

2α
tanh−1(αv) exp

[
− 2

m

(∫
γ (x) dx − α2U (x)

)]
− f2(x). (10)

To determine the function f2, one uses the Euler–Lagrange equation (Goldstein,
1980)

d

dt

(
∂L

∂v

)
= ∂L

∂x
. (11)

Substituting (10) into (11) one gets the following equation for f2(x)

d f2

dx
= dU

dx
exp

[
− 2

m

(∫
γ (x) dx − α2U (x)

)]
, (12)

integrating equation (12) with respect to x the function f2(x) is obtained and the
constant of motion is given by

K (x , v) = mv2

2(1 − α2v2)
exp

[
− 2

m

(∫
γ (x) dx − α2U (x)

)]
+ f2(x). (13)
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To obtain the Hamiltonian of the system, we express the constant of motion in
terms of the position and the generalized momentum

H (x , p) ≡ K (x , v(x , p)), (14)

therefore one has to solve (9) for the velocity as a function of the position and the
generalized momentum, which at first sight may seem like a formidable task but
it can be done if we restrict ourselves to the case |αv| < 1, as it will be showed in
the following example.

3. EXAMPLE

Consider a relativistic particle of mass m at rest under the action of a constant
force λ > 0 and immersed in a medium that exerts some type of friction which is
proportional to the square of the velocity. The classical equation of motion for this
system is given by

m
dv

dt
= (λ − γ v2)(1 − v2/c2)3/2, (15)

where γ is a positive real parameter and c represents the peed of light. Writing
(15) at first order of approximation in v2/c2 we have

m
dv

dt
= (λ − γ v2)(1 − α2v2), (16)

where α2 = 3
2c2 . The mechanical system (16) is a particular case of the mechanical

system given by (7) where U (x) = −λx and γ (x) = −γ . Using (8)–(10) we have

G(x , v) = m

(1 − α2v2)2
exp

[
−2x

m

(
λα2 − γ

)]
, (17)

p = m

2

(
v

1 − α2v2
+ tanh−1(αv)

α

)
exp

[
−2x

m

(
λα2 − γ

)]
, (18)

L(x , v) = mv tanh−1(αv)

2α
exp

[
−2x

m

(
λα2 − γ

)] − f2(x), (19)

to find f2(x) we have to solve the equation

d f2

dx
= −λ exp

[
−2x

m

(
λα2 − γ

)]
, (20)

which has the following solution

f2(x) = mλ

2(λα2 − γ )

(
e−2x(λα2−γ )/m − 1

)
. (21)
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Therefore, one obtains the Lagrangian

L(x , v) = mv tanh−1(αv)

2α
e−2x(λα2−γ )/m − mλ

2(λα2 − γ )

(
e−2x(λα2−γ )/m − 1

)
,

(22)
and the constant of motion

K (x , v) = mv2

2(1 − α2v2)
e−2x(λα2−γ )/m + mλ

2(λα2 − γ )

(
e−2x(λα2−γ )/m − 1

)
. (23)

To obtain the Hamiltonian of the system, we restrict ourselves to the case |αv| < 1,
therefore equation (18) reads

pe2x(λα2−γ )/m = m

2

∞∑
n=0

(
2n + 2

2n + 1

)
α2nv2n+1, (24)

comparing both sides of (24) we conclude that

v2n+1 = 2n + 1

(n + 1)!

(
2λx

m

)n p

m
e−2γ x/m , (25)

therefore, the Hamiltonian is given by

H (x , p) = m

2
e−2x(λα2−γ )/m

∞∑
n=0

α2nv2n+2(x , p)

+ mλ

2(λα2 − γ )

(
e−2x(λα2−γ )/m − 1

)
, (26)

where v2n+2(x , p) is given by

v2n+2(x , p) =
(

p

m
e−2γ x/m 2n + 1

(n + 1)!

(
2λx

m

)n)(2n+2)/(2n+1)

. (27)

Notice that the Hamiltonian (26) has physical meaning only when p > 0 and
x > 0. Using Hamilton’s equations of motion we have

ẋ = e−2λα2x/m
∞∑

n=0

(2λα2x/m)n

n!

[
(2n + 1)pe−2γ x/m

(n + 1)!m

(
2λx

m

)n]1/(2n+1)

, (28)

ṗ = e−2x(λα2−γ )/m

[
λ + (λα2 − γ )

∞∑
n=0

α2n

[
(2n + 1)pe−2γ x/m

(n + 1)!m

×
(

2λx

m

)n](2n+2)/(2n+1)]
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− 2p

m
e−2λα2x/m

∞∑
n=0

α2n

n!

[
−γ

(
2λx

m

)n

+ λn

(
2λx

m

)n−1
]

×
[

(2n + 1)pe−2γ x/m

(n + 1)!m

(
2λx

m

)n]1/(2n+1)

.

Hamilton’s first equation of motion (28) give us the velocity as a function of the
position and the generalized momentum for the case |αv| < 1. All the expressions
derived have the right limit when γ → 0 and α → 0.

4. CONCLUSIONS

The general form of the Lagrangian, the constant of motion and the gener-
alized momentum were obtained for the following nonconservative autonomous
system m dv/dt = (−dU/dx + γ (x)v2)(1 − α2v2). The Hamiltonian associated
to the system was found for the case |αv| < 1. All the expressions obtained in this
paper converge to the conservative case when the dissipation parameter goes to
zero.
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